bayesvalidrox.surrogate_models.input_space.InputSpace¶
- class bayesvalidrox.surrogate_models.input_space.InputSpace(input_object, meta_Model_type='pce')¶
Bases:
object
This class generates the input space for the metamodel from the distributions provided using the Input object.
Attributes¶
- Inputobj
Input object containing the parameter marginals, i.e. name, distribution type and distribution parameters or available raw data.
- meta_Model_typestr
Type of the meta_Model_type.
- __init__(input_object, meta_Model_type='pce')¶
Methods
__init__
(input_object[, meta_Model_type])build_polytypes
(rosenblatt)Creates the polynomial types to be passed to univ_basis_vals method of the MetaModel object.
Check if the given InputObj is valid to use for further calculations: 1) Has some Marginals 2) The Marginals have valid priors 3) All Marginals given as the same type (samples vs dist)
init_param_space
([max_deg])Initializes parameter space.
transform
(X[, params, method])Transforms the samples via either a Rosenblatt or an isoprobabilistic transformation.
- build_polytypes(rosenblatt)¶
Creates the polynomial types to be passed to univ_basis_vals method of the MetaModel object.
Parameters¶
- rosenblattbool
Rosenblatt transformation flag.
Returns¶
- orig_space_distobject
A chaospy JDist object or a gaussian_kde object.
- poly_typeslist
A list of polynomial types for the parameters.
- check_valid_inputs() None ¶
Check if the given InputObj is valid to use for further calculations: 1) Has some Marginals 2) The Marginals have valid priors 3) All Marginals given as the same type (samples vs dist)
Returns¶
None
- init_param_space(max_deg=1)¶
Initializes parameter space.
Parameters¶
- max_degint, optional
Maximum degree. The default is 1.
Returns¶
- raw_dataarray of shape (n_params, n_samples)
Raw data.
- bound_tupleslist of tuples
A list containing lower and upper bounds of parameters.
- transform(X, params=None, method=None)¶
Transforms the samples via either a Rosenblatt or an isoprobabilistic transformation.
Parameters¶
- Xarray of shape (n_samples,n_params)
Samples to be transformed.
- paramslist
Parameters for laguerre/gamma-type distribution.
- methodstring
If transformation method is ‘user’ transform X, else just pass X.
Returns¶
- tr_X: array of shape (n_samples,n_params)
Transformed samples.