bayesvalidrox.surrogate_models.reg_fast_ard.RegressionFastARD¶
- class bayesvalidrox.surrogate_models.reg_fast_ard.RegressionFastARD(n_iter=300, start=None, tol=0.001, fit_intercept=True, normalize=False, copy_X=True, compute_score=False, verbose=False)¶
Bases:
LinearModel
,RegressorMixin
Regression with Automatic Relevance Determination (Fast Version uses Sparse Bayesian Learning) https://github.com/AmazaspShumik/sklearn-bayes/blob/master/skbayes/rvm_ard_models/fast_rvm.py
Parameters¶
- n_iter: int, optional (DEFAULT = 100)
Maximum number of iterations
- start: list, optional (DEFAULT = None)
Initial selected features.
- tol: float, optional (DEFAULT = 1e-3)
If absolute change in precision parameter for weights is below threshold algorithm terminates.
- fit_interceptboolean, optional (DEFAULT = True)
whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered).
- copy_Xboolean, optional (DEFAULT = True)
If True, X will be copied; else, it may be overwritten.
- compute_scorebool, default=False
If True, compute the log marginal likelihood at each iteration of the optimization.
- verboseboolean, optional (DEFAULT = FALSE)
Verbose mode when fitting the model
Attributes¶
- coef_array, shape = (n_features)
Coefficients of the regression model (mean of posterior distribution)
- alpha_float
estimated precision of the noise
- active_array, dtype = np.bool, shape = (n_features)
True for non-zero coefficients, False otherwise
- lambda_array, shape = (n_features)
estimated precisions of the coefficients
- sigma_array, shape = (n_features, n_features)
estimated covariance matrix of the weights, computed only for non-zero coefficients
- scores_array-like of shape (n_iter_+1,)
If computed_score is True, value of the log marginal likelihood (to be maximized) at each iteration of the optimization.
References¶
[1] Fast marginal likelihood maximisation for sparse Bayesian models (Tipping & Faul 2003) (http://www.miketipping.com/papers/met-fastsbl.pdf) [2] Analysis of sparse Bayesian learning (Tipping & Faul 2001)
- __init__(n_iter=300, start=None, tol=0.001, fit_intercept=True, normalize=False, copy_X=True, compute_score=False, verbose=False)¶
Methods
__init__
([n_iter, start, tol, ...])fit
(X, y)Fits ARD Regression with Sequential Sparse Bayes Algorithm.
Get metadata routing of this object.
get_params
([deep])Get parameters for this estimator.
log_marginal_like
(XXa, XYa, Aa, beta)Computes the log of the marginal likelihood.
predict
(X[, return_std])Computes predictive distribution for test set.
score
(X, y[, sample_weight])Return the coefficient of determination of the prediction.
set_params
(**params)Set the parameters of this estimator.
set_predict_request
(*[, return_std])Request metadata passed to the
predict
method.set_score_request
(*[, sample_weight])Request metadata passed to the
score
method.- fit(X, y)¶
Fits ARD Regression with Sequential Sparse Bayes Algorithm.
Parameters¶
- X: {array-like, sparse matrix} of size (n_samples, n_features)
Training data, matrix of explanatory variables
- y: array-like of size [n_samples, n_features]
Target values
Returns¶
- selfobject
Returns self.
- get_metadata_routing()¶
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
Returns¶
- routingMetadataRequest
A
MetadataRequest
encapsulating routing information.
- get_params(deep=True)¶
Get parameters for this estimator.
Parameters¶
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns¶
- paramsdict
Parameter names mapped to their values.
- log_marginal_like(XXa, XYa, Aa, beta)¶
Computes the log of the marginal likelihood.
- predict(X, return_std=False)¶
Computes predictive distribution for test set. Predictive distribution for each data point is one dimensional Gaussian and therefore is characterised by mean and variance based on Ref.[1] Section 3.3.2.
Parameters¶
- X: {array-like, sparse} (n_samples_test, n_features)
Test data, matrix of explanatory variables
Returns¶
: list of length two [y_hat, var_hat]
- y_hat: numpy array of size (n_samples_test,)
Estimated values of targets on test set (i.e. mean of predictive distribution)
- var_hat: numpy array of size (n_samples_test,)
Variance of predictive distribution
References¶
[1] Bishop, C. M. (2006). Pattern recognition and machine learning. springer.
- score(X, y, sample_weight=None)¶
Return the coefficient of determination of the prediction.
The coefficient of determination \(R^2\) is defined as \((1 - \frac{u}{v})\), where \(u\) is the residual sum of squares
((y_true - y_pred)** 2).sum()
and \(v\) is the total sum of squares((y_true - y_true.mean()) ** 2).sum()
. The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a \(R^2\) score of 0.0.Parameters¶
- Xarray-like of shape (n_samples, n_features)
Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead with shape
(n_samples, n_samples_fitted)
, wheren_samples_fitted
is the number of samples used in the fitting for the estimator.- yarray-like of shape (n_samples,) or (n_samples, n_outputs)
True values for X.
- sample_weightarray-like of shape (n_samples,), default=None
Sample weights.
Returns¶
- scorefloat
\(R^2\) of
self.predict(X)
w.r.t. y.
Notes¶
The \(R^2\) score used when calling
score
on a regressor usesmultioutput='uniform_average'
from version 0.23 to keep consistent with default value ofr2_score()
. This influences thescore
method of all the multioutput regressors (except forMultiOutputRegressor
).
- set_params(**params)¶
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.Parameters¶
- **paramsdict
Estimator parameters.
Returns¶
- selfestimator instance
Estimator instance.
- set_predict_request(*, return_std: bool | None | str = '$UNCHANGED$') RegressionFastARD ¶
Request metadata passed to the
predict
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed topredict
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it topredict
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.Parameters¶
- return_stdstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
return_std
parameter inpredict
.
Returns¶
- selfobject
The updated object.
- set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') RegressionFastARD ¶
Request metadata passed to the
score
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toscore
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.Parameters¶
- sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
sample_weight
parameter inscore
.
Returns¶
- selfobject
The updated object.