Example: model comparison

This example shows the multi-model comparison. You will see how to perform a multi-model comparison

Provided are three models, a linear models with 2 input parameters, a nonlinear model with 2 input parameters and a nonlinear model with 4 input parameters. The data to base the comparison on is given in an extra file.

Note

A detailed explanation of this example will be provided in future as part of the tutorial.

Model 1: L2_model

Pylink model1

Property

Setting

Model type

Function (linear)

Number of input parameters

2

Number of output parameters

1

Time- or space- dependency

space-dependency

MC reference

No

Priors1

Parameter

Distribution

0-2

given as correlated samples

Model 1: NL2_model

Pylink model1

Property

Setting

Model type

Function (exponential)

Number of input parameters

2

Number of output parameters

1

Time- or space- dependency

space-dependency

MC reference

No

Priors1

Parameter

Distribution

0-2

given as correlated samples

Model 1: NL4_model

Pylink model1

Property

Setting

Model type

Function (cosine)

Number of input parameters

4

Number of output parameters

1

Time- or space- dependency

space-dependency

MC reference

No

Priors1

Parameter

Distribution

0-4

given as correlated samples

Surrogates 1-3

All surrogates share the same setup and only differ in the given model.

MetaModel settings

Property

Setting

surrogate-type

aPCE

associated model

see lists above

degree choices

1-12, q-norm truncation 1.0

regression

OMP (Orthogonal matching pursuit)

Training choices

Property

Setting

Static sampling method

latin-hypercube

Number of static samples

100

Number of total samples

100