Example: model comparison¶
This example shows the multi-model comparison. You will see how to perform a multi-model comparison
Provided are three models, a linear models with 2 input parameters, a nonlinear model with 2 input parameters and a nonlinear model with 4 input parameters. The data to base the comparison on is given in an extra file.
Note
A detailed explanation of this example will be provided in future as part of the tutorial.
Model 1: L2_model¶
Property |
Setting |
---|---|
Model type |
Function (linear) |
Number of input parameters |
2 |
Number of output parameters |
1 |
Time- or space- dependency |
space-dependency |
MC reference |
No |
Parameter |
Distribution |
---|---|
0-2 |
given as correlated samples |
Model 1: NL2_model¶
Property |
Setting |
---|---|
Model type |
Function (exponential) |
Number of input parameters |
2 |
Number of output parameters |
1 |
Time- or space- dependency |
space-dependency |
MC reference |
No |
Parameter |
Distribution |
---|---|
0-2 |
given as correlated samples |
Model 1: NL4_model¶
Property |
Setting |
---|---|
Model type |
Function (cosine) |
Number of input parameters |
4 |
Number of output parameters |
1 |
Time- or space- dependency |
space-dependency |
MC reference |
No |
Parameter |
Distribution |
---|---|
0-4 |
given as correlated samples |
Surrogates 1-3¶
All surrogates share the same setup and only differ in the given model.
Property |
Setting |
---|---|
surrogate-type |
aPCE |
associated model |
see lists above |
degree choices |
1-12, q-norm truncation 1.0 |
regression |
OMP (Orthogonal matching pursuit) |
Property |
Setting |
---|---|
Static sampling method |
latin-hypercube |
Number of static samples |
100 |
Number of total samples |
100 |